Our Burning Economy, Siren Song, and Fission Promise Wind, Solar, Storage, Money, Scope

Osher @ Dartmouth

Robert Hargraves

Jan 11, 2023

Each new 1-GW coal plant emits 8 Mt CO2/year. 574 GW of new coal plants' emissions = 5 Gt/year.

Mark Z. Jacobson 2012 WWS (water/wind/solar) article

- 16,519 GW(t) combustion power replaced by WWS sources.
- Everything is electrified, including transportation, industry.
- 2050 electricity demand grows to 11,800 GW(e).

https://web.stanford.edu/group/efmh/jacobson/Articles/I/CountriesWWS.pdf

Mark Z Jacobson strategy is a 100% water/wind/solar zero-CO2 solution.

Inspired Green New Deal.

Refuted, discredited.

Jacobson sued refuting authors.

https://web.stanford.edu/group/efmh/ jacobson/Articles/I/CountriesWWS.pdf

100% Clean and Renewable Wind, Water, and Sunlight All-Sector Energy Roadmaps for 139

Mark Z. Jacobson, Mark A. Delucchi, Zack A.F. Bauer, ..., Jingfan Wang, Eric Weiner, Alexander S. Yachanin

jacobson@stanford.edu

HIGHLIGHTS

Roadmaps for 139 countries to use 100% wind-water-solar in all energy sectors

Roadmaps avoid 1.5°C global warming and millions of annual air-pollution deaths

Roadmaps reduce social cost of energy and create 24.3 million net long-term jobs

Roadmaps reduce power disruption and increase worldwide access to energy

Princeton University Net-Zero America 345 page PowerPoint presentation; \$2.5 trillion by 2050.

Table of Contents

Section	Slide	Section
<u>Foreword by John P. Holdren</u>	4	Pillar 3: Bioene
Preface and Acknowledgments	6	Spatial down
Executive Summary	7	Spatial down
Motivation for the Net-Zero America study	16	<u>Hydrogen p</u>
Modeling methodology and key assumptions	22	Pillar 4: CO ₂ ca
Constructing multiple pathways to net-zero	30	Pillar 5: Reduc
High-level model results: emissions, primary energy, system costs	32	Pillar 6: Enhan
Pillar 1: End-use energy productivity – efficiency and electrification	37	<u>Agricultural</u>
Transportation sector	43	Forestry-sec
Buildings sector	56	Summary of 6
Electricity distribution system	66	Implications of
Industrial sector	68	Land use
Economy-wide electricity demand and demand-supply balancing	75	Capital mob
Pillar 2: Clean electricity	87	<u>Fossil fuel ir</u>
Solar and wind capacity deployment	99	<u>Coal</u>
Methodology for downscaling solar, wind, and transmission	101	<u>Oil</u>
Mapping solar and wind projects for E+ with base siting	106	<u>Natural g</u>
Example area details of solar and wind projects, E+ with base siting	123	<u>Employmen</u>
Transmission system for solar and wind, E+ with base siting	130	Air pollution
Mapping solar and wind for E+ with constrained siting	140	Potential bottle
Transmission system for solar and wind, E+ with base siting	145	Priority actions
<u>Mapping solar and wind for E+ RE+ with base siting</u>	155	List of separate
<u>Transmission system for solar and wind, E+ RE+ with base siting</u>	162	
Cumulative land-use impacts of solar and wind deployment	172	
<u>Clean firm electricity sources</u>	177	
Timing of retirements and rebuilds of thermal generators	181	

PRINCETON UNIVERSITY

2

and linger center for energy+the environment

https://netzeroamerica.princeton.edu/img/Princeton_NZA_Interim_Report_15_Dec_2020_FINAL.pdf

	Slide
gy and other zero-carbon fuels and feedstocks	200
<u>scaling of bioenergy systems, E+</u>	208
<u>scaling of bioenergy systems, E- B+</u>	217
oduction and use	221
<u>ture, transport, usage, and storage</u>	231
<u>d non-CO₂ emissions</u>	248
<u>ed land sinks</u>	257
<u>oil carbon uptake potential</u>	260
or carbon sink potential	263
<u>illars of the transition</u>	265
net-zero transitions	266
	267
<u>ization</u>	269
<u>lustries</u>	278
	279
	284
5	287
	293
and health	323
necks to the transition	334
for the 2020's	335
y available technical annexes	345

USA only

wind, solar

batteries

transmission

bioenergy

 $\cap \cap \cap$

H2 for synfuel

High Meadows Environmental Institute

Carbon Mitigation Initiative

Princeton University Net-Zero America Practical? Technology? Cost? Mining? Land area? Just US?

Executive Summary (4/9)Six pillars expand rapidly for 3 decades. By 2050:

1. Efficiency & Electrification

Consumer energy investment and use behaviors change

- 300 million personal EVs
- 130 million residences with heat pump heating

Industrial efficiency gains

- Rapid productivity gain
- EAF/DRI steel making

4. CO₂ capture & storage

Geologic storage of 0.9 – 1.7 $GtCO_2/y$

- Capture at ~1,000+ facilities
- 21,000 to 25,000 km interstate CO₂ trunk pipeline network
- 85,000 km of spur pipelines delivering CO₂ to trunk lines
- Thousands of injection wells

2. Clean Electricity

Wind and solar

- Rapidly site 10s-100s of GW per year, sustain for decades • 3x to 5x today's transmission

Nuclear

- 1-GW reactors (or 3,800 SMRs).
- In RE- scenario site up to 250 new • Spent fuel disposal. NGCC-CCS
- In RE-, 300+ plants (@750 MW) **Flexible resources**

- Combustion turbines w/high H₂ • Large flexible loads: electrolysis, electric boilers, direct air capture • 50 - 180 GW of 6-hour batteries

5. Non-CO₂ Emissions

Methane, N₂O, Fluorocarbons

https://netzeroamerica.princeton.edu/img/Princeton_NZA_Interim_Report_15_Dec_2020_FINAL.pdf

• 20% below 2020 emissions (CO_{2e}) by 2050 (30% below 2050 REF).

3. Zero-Carbon Fuels

Major bioenergy industry

- 100s of new conversion facilities
- 620 million t/y biomass feedstock production (1.2 Bt/y in E-B+)
- H₂ and synfuels industries
 - 8-19 EJ H₂ from biomass with CCS (BECCS), electrolysis, and/or methane reforming
 - Largest H₂ use is for fuels synthesis in most scenarios

6. Enhanced land sinks

Forest management

• Potential sink of 0.5 to 1 $GtCO_{2e}/y$, impacting ¹/₂ or more of all US forest area (\geq 130 Mha).

Agricultural practices

• Potential sink ~0.20 GtCO_{2e}/y if conservation measures adopted across 1 - 2 million farms.

Global energy equivalent: 4 cubic miles of oil

A CUBIC MILE OF OIL

Realities and Options for Averting the Looming Global Energy Crisis

> Hewitt D. Crane Edwin M. Kinderman Ripudaman Malhotra

Ripu Malhotra et al, SRI

We might supply all the world's energy with ALL of these.

Solar Roofs (PV): 4.2 billion

- 250,000 roofs per day for 50 years
- 2.1 kW with 20% availability .

Solar CSP: 7,700 solar parks

- 3 per week for 50 years
- 900 MW with 25% availability

Hydro: 200 dams

- 1 every quarter for 50 years
- 18 GW with 50% availability

Windmills: 3 million

- 1200 per week for 50 years
- 1.65 MW with 35% availability

Energy equivalent of 1 cubic mile of oil

Nuclear: 2,500 plants² 1 per week for 50 years 900 MW with 90% availability

Low natural gas costs dropped electricity prices to ~ 2.5 cents/kWh in some US regions.

https://www.forbes.com/sites/scottcarpenter/2020/09/30/when-nuclear-plants-ask-for-money-states-find-they-cant-afford-to-say-no/#4d15dc4c4b9b

Low electricity prices made coal, nuclear less competitive.

https://www.forbes.com/sites/scottcarpenter/2020/09/30/when-nuclear-plants-ask-for-money-states-find-they-cant-afford-to-say-no/#4d15dc4c4b9b

2020

New England electricity, 17 GW, 12/20/22 iso-ne.com

Copper Mountain solar facility, Nevada, 802 MW largest in US

https://www.ysgsolar.com/blog/15-largest-solar-farms-world-2021-ysg-solar

Solar power needs 450X the land of fission plants.

https://environmentalprogress.org/the-complete-case-for-nuclear

Net metering: Utilities must buy electricity from rooftop solar panels at retail (~20 ¢/kWh) not grid market (~5 ¢/kWh).

Power can't be controlled by utility. Exacerbates duck curve.

https://www.solarreviews.com/blog/california-net-metering-nem-2

Increases total power costs; paid by other customers.

The most expensive "renewable" energy.

Community solar brings benefits to homes in shade.

California's "duck curve", created by by unmanaged, subsidized solar, causes mid-day shutdown of power plants.

https://www.energy.gov/eere/articles/confronting-duck-curve-how-address-over-generation-solar-energy

Wind power needs 400X the land of fission plants.

Source: Comparison between Diablo Canyon Nuclear Plant and Alta Wind Energy Center. In 2017, Diablo Canyon produced 17.90 TWh of electricity on an approximate land area of .84 square kilometers. In 2017, Alta produced 3.18 TWh of electricity on an approximate land area of 60.4 square kilometers. Generation data from Energy Information Agency.

Ergo the emphasis on expensive off-shore wind.

https://environmentalprogress.org/the-complete-case-for-nuclear

US NREL 2022: Wind energy costs ~ \$34/MWh.

Levelized Cost Breakdown for Reference Land-Based Wind Plant

US NREL 2022: Offshore wind costs \$78/MWh Levelized Cost Breakdown for **Reference Fixed-Bottom Offshore Wind Plant**

* Engineering Management cost small, but nonzero

https://www.nrel.gov/docs/fy23osti/84774.pdf

Lazard 2021: levelized cost of electric energy Levelized Cost of Energy Comparison—Unsubsidized Analysis

Selected renewable energy generation technologies are cost-competitive with conventional generation technologies under certain circumstances

	Solar PV–Rooftop Residential			
	Solar PV–Rooftop C&I	\$		
	Solar PV–Community	\$59		
Denovichie Energy	Solar PV–Crystalline Utility Scale ⁽¹⁾	\$30	\$41	
Renewable Energy	Solar PV–Thin Film Utility Scale ⁽¹⁾	\$28	37	
	Solar Thermal Tower with Storage			
	Geothermal		\$56	
	Wind	\$26	\$50	
	Gas Peaking ⁽³⁾			
Conventional	Nuclear ⁽⁴⁾	\$29 ⁽⁵⁾		
	Coal ⁽⁶⁾	\$42 ⁽⁵⁾	\$65	
	Gas Combined Cycle (3)	\$24 ⁽⁵⁾ \$ 45		
	\$0 \$0	\$25	\$50	

https://www.lazard.com/media/451905/lazards-levelized-cost-of-energy-version-150-vf.pdf

LCOE conceptual problem

like gasoline at \$3.69/gallon.

Electric **POWER** is a **SERVICE**, delivered and consumed on demand.

Wind/solar power is generally not **DISPATCHABLE**, varying generation to meet changing load demand.

Electric **ENERGY** is not a **PRODUCT** you can easily buy and store,

Wind/solar power service is not **AVAILABLE** during lulls/darkness.

LFSCOE: Levelized full system cost of energy can be orders of magnitude higher than Lazard estimates. Comparison of LCOE and LFSCOE.

Technology	LCOE	LFSCOE			
	[USD/MWh]	Germany [USD/MWh]	Texa [USD/MWh]		
Biomass	95	103	117		
Coal (USC)	76	78	9(
Natural Gas CC	38	35	4(
Natural Gas CT	67	39	42		
Nuclear	82	105	122		
Solar PV	36	1380	413		
Wind	40	483	29 1		

https://reader.elsevier.com/reader/sd/pii/S0360544222018035? token=928A93FC41166DEFB274B0FF8D7F756436105CFF3E1D8A9F8B37F5A8A990A8C795FC8139154682383C881587C2531BA5&originRegion=useast-1&originCreation=20230107194247

Often wind/solar \$/kWh is < 50% of revenue.

\$ renewable energy credits

\$ production tax credits

\$ tax exempt green bond interest discount

Wind/Solar preferences

Feed-in tariffs

Renewable portfolio standards

Bird kill examptions

Local zoning overrides

15-50% credit in auctions for firm power capacity

No toxic recycling penalty

Massachusetts utilities pay solar panel generators \$345/MWh (34.5¢/kWh) for solar energy RECs (renewable energy credits).

https://www.srectrade.com/markets/rps/srec/massachusetts

Bid Prices for MA - Last Twelve Months (LTM)

MA2021 (II) bid

American Experiment analysis of Virginia electricity costs

Wind/solar power costs kept secret from public.

SECTION 83C

Request for Proposal Application Form

Mayflower Wind Project 2 (804 MW Low Proposal Cost Energy)

- Proposal 1: the required 408 MW Project \bullet
- Proposal 2: Low Cost Energy 804 MW Project delivering the lowest cost offshore wind energy ever in the U.S.
- Proposal 3: Infrastructure and Innovation 804 MW Project with over investments in port infrastructure, technology, and innovation to position Massachusetts as a global leader in offshore wind
- Proposal 4: Massachusetts Manufacturing 804 MW Project with all the benefits included in Infrastructure and Innovation as well as investment of manufacturing facility at , creating the offshore supply chain to the Commonwealth with export opportunities within the U.S. and farther afield

The three main (804 MW) proposals provide Massachusetts with the ability to select the project scope that best meets your needs. Each of these proposals meet the requirements of the RFP by providing significant ratepayer benefits and providing for strong economic development in the Commonwealth with each targeted at different elements in that required formulation. The Low Cost Energy proposal is focused on generating the maximum benefits to ratepayers while providing over the life of the project for initiatives to support the industry and local economy. The Infrastructure and Innovation Proposal builds on the initial of immediate investment in port infrastructure and an proposal by in near term funding to spur innovation in technology and the blue economy. Finally, the Massachusetts in investment during 2020-2023 and an Manufacturing Proposal adds over of lease payments over the next 12 years to support tower manufacturing. This manufacturing base, with tower production beginning in 2021, would represent a key step in Massachusetts becoming a true hub for the offshore wind industry in the U.S. and set the stage for the industry and local companies to compete globally.

of strategic

in a new manufacturing jobs annually, bringing

Mayflower Wind Picked For 800-Megawatt Project Off Of Nantucket, Martha's Vineyard

https://static1.squarespace.com/static/ 5cffcb6d97cc59000115fa39/t/ 5d683e54c6a21e0001f18cc2/1567112815707/ Mayflower+Wind+Project+2+ %28804MW+Low+Cost+Energy%29_Public+Version.pdf

High capital costs cause high electricity costs.

Rhode Island and Massachusetts state officials picked Deepwater Wind to build a \$1.5-billion, 385-megawatt wind farm in federal waters off Block Island.

$\frac{1500}{385W} = 33.90$ per watt (of capital cost)

at an initial price of 24.4 ¢/kWh

200/30 = 6.67 per watt.

- Deepwater signed an agreement with National Grid to sell the power from a \$200-million, 30-MW wind farm off Block Island,

Completion update: \$13/watt

https://en.wikipedia.org/wiki/Wind_power_in_the_United_States

US wind turbine average capacity factor ~ 1/3.

	0.55						•	2013	•	2014	ŀ
	0.50										
	0.45										
Ξ	0.40		2					2			
factio	0.35										
acity 1	0.30									3	
cap	0.25								•••		
	0.20										
	0.15			•	•						
	0.10										
		1	4	7	10	13	16	19	22	25	2

• 2015 • 2016 • 2017

28 31 34 37 40 43 46 49 52 55 58 61 64

Reference No.https://www.nature.com/articles/s41598-020-59936-x

INTERMITTENT wind and solar power generate power ~ 1/3 of the time.

Natural Gas & Renewables: Working Together

Over the last few years, production of natural gas and renewable energy resources have reached record levels in the United States.

Each 1 GW of wind or solar is matched by 1 GW of natural gas generation ~ 2/3 of the time. https://www.ingaa.org/File.aspx?id=30374&v=b0798882

Ad

REDUCED EMISSIONS AND ABUNDANT, DOMESTIC ENERGY

Natural Gas is the Foundation for Renewables

Offshore wind turbines *increase* CO2 emissions 10%. Choice: Build full-time CCGT? or on/off NGCT and off/on wind?

1,000 MW(e) po				
Power source	Use	Efficiency	Gas burned	
Wind turbine with	50%		_	
NGCT	50%	29%	1720 MW(t)	0.50 x 1000 /
CCGT only	100%	64%	1565 MW(t)	1.00 s 1000 /

	Efficiency	Start time	Cost
ine	29%	10 min	\$700/k
	64%	30 min	\$1100/k

US plans 30 GW offshore wind turbines by 2030.

Only one, 30 MW, project operating in 2022.

Block Island 5 x 6 MW costing \$400 million.

\$13 million per MW of wind-dependent capacity.

Developers withdrawing? got 30% ITC!

https://www.manhattan-institute.org/lesser-biden-administrations-offshore-wind-fantasy

Bay State Wind National Grid **Deepwater Wind**

Fairways North Call Area

Equinor Wind US

Atlantic Shores Offshore Wind

Vineyard Wind Fairways South Call Area Hudson North Call Area Hudson South Call Area

Ocean Wind

GSOE I Skipjack **US Wind**

Dominion

Commonwealth of Virginia Avangrid Renewables

Wilmington West WEA Wilmington East WEA Grand Strand Call Area Cape Romain Call Area Winyah Call Area **Charleston Call Area**

Levelized Costs for Offshore Wind PPAs Selling ORECs Levelized 2019\$/OREC

Power Purchase Agreements

https://www.manhattan-institute.org/dismal-economics-offshore-wind-energy

Offshore wind curtailment cost UK £227 million in 2022 because grid could not accept the power.

https://mailchi.mp/86e68627c77f/payments-for-windfarms-to-switch-off-soar-to-quarter-billion-pounds-193411?e=0c0eac7096

Moray East All other windfarms

Robert Bryce: 2018 tax incentives per unit energy produced.

PTC = production tax credit, 2.5c/kWh;ITC = investment tax credit 1 EJ = 1 exajoule ~ 32 GW-years

https://www.forbes.com/sites/robertbryce/2021/12/27/why-is-solar-energy-getting-250-times-more-in-federal-tax-credits-than-nuclear/?sh=42d0bc6721cf https://www.energy.senate.gov/services/files/444FFC94-54BC-49BC-85B2-C694194F9232

"El Hierro is the first fully sustainable island in the world..."

w.enel.com l-hierroarticles/20 e

Spain's El Hierro island attempted 100% renewable power.

Three wind turbines with pumped hydro energy storage.

though only 28% during 4Q 2018.

During 2018 it supplied 57% of El Hierro's electricity, 10 MWe,

https://euanmearns.com/tag/el-hierro/

100% Delusion! **Sun sets.** Wind Julls. **Batteries?** to give 1 day of energy use...

- 36 billion Tesla Powerwalls
- Build 1000 per second for 10 years
- \$250 trillion

100 Tesla 3100 kWh Megapack batteries cost \$358/kWh.

https://electrek.co/2021/07/26/tesla-reveals-megapack-prices/ https://www.tesla.com/megapack/design

Megapack enables low-cost, high-density commercial and utility projects at large scale. It ships ready to install with fully integrated battery modules, inverters, and thermal systems. View product details

Order Megapack 308 MWh 77 MW Power Energy **Megapack Quantity** 100 • Installation included Site Location California \sim Earliest deliveries in late 2022 Price \$110,346,840 Taxes not included **Annual Maintenance** \$375,180 Price escalates at 2% per year **Due Today** \$5,000 Non-refundable Order Deposit By placing a deposit, I agree to the Megapack Order Agreement, Megapack Maintenance Agreement, and Privacy Notice

Site Contact Information

Least expensive Megapack costs \$666/kWh in 2023

https://electrek.co/2021/07/26/tesla-reveals-megapack-prices/ https://www.tesla.com/megapack/design

1.9 MW 3.9 MWh Energy Power **Megapack Quantity Megapack Duration** 2 hr 4 hr Include Installation Yes No Learn More Site Location California 🗸 **Desired Delivery Date** Q4 2024 🗸 **Estimated Price** \$2,596,910 Subject to change, taxes not included **Est. Annual Maintenance** \$8,290 Price escalates at 2% per year Due Today \$1,000 Non-refundable Reservation Deposit

US total battery storage < 2 GWh; @ \$589/kWh

https://www.eia.gov/analysis/studies/electricity/batterystorage/pdf/battery_storage_2021.pdf

Tripling 33%-capacity-factor wind, solar does not fix lulls. Germany experienced a 100 hour lull, 3-6 Dec 2016.

https://energycentral.com/c/ec/wind-and-solar-energy-lulls-energy-storage-germany

Wind and solar supplied just 2% of nameplate capacity.

Power sources	GW nameplate	de
Solar	41.0	
Wind	47.8	
Reliables		
Total		

Observed *Dunkleflaute* needs 24 days of power storage.

Cost-optimized storage, solar, wind. Studied 35 years of hourly German power. Need time between Dunkleflauten to recharge.

https://www.econstor.eu/handle/10419/236723 Ruhnau, Qvist

Powering New England with just wind and solar requires

- Tesla Megapack batteries @ \$358/kWh
- 13,000 GWh x \$358/kWh ~ \$4.7 trillion

Actual 2018 hourly electricity demand, sun, and wind possible energy https://www.nae.edu/File.aspx?id=239123

China monopolized magnet component rare earths, which US dominated in 1990s.

IEEE, Vaclav Smil: To Get Wind Power You Need Oil Each wind turbine embodies a whole lot of petrochemicals and fossil-fuel energy

Large trucks bring steel and other raw materials to the site, earth-moving equipment beats a path to otherwise inaccessible high ground, large cranes erect the structures, and all these machines burn diesel fuel. So do the freight trains and cargo ships that convey the materials needed for the production of cement, steel, and plastics.

For a **5-megawatt turbine**, the steel alone averages 150 metric tons for the reinforced concrete foundations, 250 metric tons for the rotor hubs and nacelles (which house the gearbox and generator), and 500 metric tons for the towers.

Materials used per TWh generated, by energy source

"Quadrennial Technology Review: An Assessment of Energy Technologies and Research Opportunities," Table 10. September 2015. United States Department of Energy. Nuclear and hydro require 10 tonnes/TWh and 1 tonne/TWh of other materials, respectively, but are unable to be labeled on the graph.

Energy Source

Jim Kennedy projects massive mining increases for EVs.

How much more mining is required for projected EV production ? 2019 – 2030 PROJECTED INCREASE IN RESOURCE PRODUCTION **EVs only** NICKEL 14 X

Presentation by James Kennedy, President of ThREE Consulting 2.25.22

Source: Bloomberg for all but rare earths (from Visual Capitalist).

600 800 1000 1200 1400

Where critical minerals are mined

https://energypost.eu/critical-minerals-and-materials-supply-bottlenecks-and-risks-need-international-cooperation/

Source: IRENA, IEA

https://energypost.eu/critical-minerals-and-materials-supply-bottlenecks-and-risks-need-international-cooperation/

BofA: Green energy transition costs \$5 trillion/yr x 30 yrs.

https://business.bofa.com/content/dam/boamlimages/documents/articles/ID21_1543/Net_Zero_Redacted_Note_Updated_Final.pdf

"Even in global terms and over a 30-year span, \$150 trillion is a gargantuan amount.

The latter number is almost twice the total global GDP in 2019..."

https://news.yahoo.com/fightingclimate-change-a-150-trillion-battlebank-of-america-report-163422676.html

Note: no fission power.

McKinsey: \$9.2 trillion/yr including ongoing capital spending.

Spending on physical assets for energy and land-use systems in the NGFS Net Zero 2050 scenario would rise by about \$3.5 trillion annually more than today.

Annual spending on physical assets for energy and land-use systems¹ in a Net Zero 2050 scenario,² average 2021–50, \$ trillion

New spending

New spending on low-emissions \$3.5 assets and enabling infrastructure

Current spending

Spending reallocated from **\$1.0** high- to low-emissions assets

Continued spending on **\$2.0** low-emissions assets and enabling infrastructure³

Continued spending on highemissions assets³

https://www.mckinsey.com/business-functions/sustainability/our-insights/the-economic-transformation-what-would-change-in-the-net-zero-transition

Upgrade US transmission, 230 kV and above?

https://www.ncsl.org/documents/energy/ASilverstein4-20-11.pdf

EROI example: Invest 79.5 MJ to get 20.5 MJ to consumer use.

References

Societv's discretionary investment and consumption high. High EROI

References

Society's discretionarv investment and consumption low. Low EROI

References

World natural resources, energy, and entropy

Enumerated natural resources and energy

Economy's fundamental processes

Hall: EROI from oil sources is declining.

https://www.sciencedirect.com/science/article/pii/S0301421513003856

)00:1	5:1
919	2010
2 5:1	10:1
970s	2007
	7:1 2012
	4:1 2012

EROI declines in Norway, Mexico, and China

New Assessments of EROI for Oil and Gas from Various Countries

https://www.sciencedirect.com/science/article/pii/S0301421513003856#bib35

Goehring & Rozencwajg: EROI explains world prosperity.

				Energy uses			
Year	Energy sources	GJ/yr/ capita	EROI	Energy	Food	Shelter, work	Surpl
ancient	Food, feed, wood	5	5:1				
1	Food, feed, wood	17	5:1	3	4	10	<<
1650	No forest wood Coal discovery	20	10:1	2	4	10	4

https://f.hubspotusercontent40.net/hubfs/4043042/Content%20Offers/2021.Q4%20Commentary/2021.Q4%20GR%20Market%20Commentary.pdf

5 GJ/yr = ~160 watts

Goehring & Rozencwajg: EROI explains world prosperity.

				Energy uses			
Year	Energy sources	GJ/yr/ capita	EROI	Energy	Food	Shelter, work	Surp
ancient	Food, feed, wood	5	5:1				
1	Food, feed, wood	17	5:1	3	4	10	<<
1650	No forest wood Coal discovery	20	10:1	2	4	10	4
1900	Oil, gas, coal	25	30:1	1	4	10	10
2019	OII, gas, coal	75	30:1	1	4	10	56

https://f.hubspotusercontent40.net/hubfs/4043042/Content%20Offers/2021.Q4%20Commentary/2021.Q4%20GR%20Market%20Commentary.pdf

Goehring & Rozencwajg: EROI explains world prosperity.

			Energy uses					
	Year	Energy sources	GJ/yr/ capita	EROI	Energy	Food	Shelter, work	Surpl
	ancient	Food, feed, wood	5	5:1				
		Food, feed, wood	17	5:1	3	4	10	<
	1650	No forest wood Coal discovery	20	10:1	2	4	10	4
	1900	Oil, gas, coal	25	30:1	1	4	10	10
2019 (Oll, gas, coal	75	30:1	1	4	10	56	
	2030 ?	Wind, solar	75?	3.5:1	25?	4	10	-39'
			- · · · · · · · · · · · · · · · · · · ·		-		-	-

https://f.hubspotusercontent40.net/hubfs/4043042/Content%20Offers/2021.Q4%20Commentary/2021.Q4%20GR%20Market%20Commentary.pdf

Wade Allison: Energy options facing society today

Adam Smith: "Science is the great antidote to the poison of enthusiasm and superstition."

	"Renewables"	Chemical (electronic)	Nuclear	
Fuels	Water, wind, sun	Fossil fuels, food, biofuels	Uranium, Thoriun	
Primed or renewed	Daily and seasonal sunshine	Sunshine in geological epochs	Pre-solar stellar collapse (supernov	
Energy density kWh/kg	0.0003	1 to 7	20 million	
Fuel for a whole life	10 million tonnes	1000 tonnes	0.001 tonnes (1 kg)	
Pro	Familiar, accepted	Reliable, available 24/7	Reliable, safe, comp resilient, available 2	
Con damaging to nature		Emissions, safety	Public apprehensic failed education	

https://www.researchgate.net/publication/339629356_Nature_Energy_and_Society_A_scientific_study_of_the_options_facing_civilisation_today

Global power sources

Source: BP Statistical Review of Global Energy OurWorldInData.org/energy • CC BY Note: Includes only commercially-traded fuels (coal, oil, gas), nuclear and modern renewables. As such, it does not include traditional biomass https://ourworldindata.org/grapher/primary-energy-consumption-by-source?year=latest&time=1965..2019 sources.

Handy math trick from Google:

50,000 TWh/year in gigawatts

About 116,000 results (0.51 seconds)

50 000 (terawatt hours / year) = 5703.97764 gigawatts

Images Shopping ► Videos : More

OECD energy **180 quadrillion BTU/year ~** 6,000 GW(t)

quadrillion British thermal units OECD

non-OECD energy 270 quadrillion BTU/year ~ 9,000 GW (t)

https://www.eia.gov/outlooks/ieo/pdf/ieo2019.pdf

IEA World thermal power (Mtoe/year) Gigawatts

uses	5

sources

https:// webstore.iea.org/ download/direct/4165

		Sustainable Development Scenario			t	Stated Policies Scenario	
	2000	2019		2040	2070		2070
Industry	2 054	3 278	4,400	3 162	3 077		4 513
Transport	1 961	2 865	3,800	2 537	2 461		3 923
Buildings	2 3 4 5	3 087	4,100	2 648	2 868		4 193
Other	950	1 153		1 310	1 081		1639
Total	7 310	10 384	13,800	9 657	9 486	12,600	14 269
Coal	732	1 3 2 7		824	398		1 3 2 6
Oil	3 292	4 0 4 8		2 823	1 0 9 9		4 561
Natural gas	1104	1659		1357	426		2 362
Electricity	1 0 7 6	1943	2,600	2 909	4 507	6,000	4 004
Heat	240	312		272	187		356
Hydrogen	0	0		98	539		91
Ammonia	0	0		18	133		9
Bioenergy	859	1 0 3 5	1,400	1 0 3 5	1 315	1,700	1 285
Synfuels	0	0		32	254		0
Other renewables	7	60		290	629		275
Total	7 310	10 384		9 657	9 486		14 269

IEA: China, US, EU, and India emit most of the 32 Gt-CO2/year from fuel consumption.

Gigatonnes per year, 2000-2019

https://www.iea.org/reports/co2emissions-from-fuel-combustionoverview

Difficult to eliminate emissions 9 Gt CO2 (2014)

https://science.sciencemag.org/content/360/6396/eaas9793

Subsidized solar helped create the "difficult" load-following demand.

https://www.energy.gov/eere/articles/ confronting-duck-curve-how-addressover-generation-solar-energy
US DOE EIA energy by use sector

Commercial/Residential 13%

Transportation 29%

> Industrial 22%

Keep in mind Four sectors

Electricity Transportation Buildings Industry

US annual CO2-eq emissions, tons. Axios/Rhodium

https://www.axios.com/newsletters/axios-generate-d6e39fe0-39f4-4082-a19c-3e59f68b459c.html

IEA strategy (Sept 2020)

- 1. Transforming the **power sector** alone would only get the world one-third of the way to net-zero emissions.
- Spreading the use of electricity into more 2. parts of the economy is the single largest contributor to reaching net-zero emissions.
- Hydrogen extends electricity's reach. 3.
- Carbon capture and bioenergy play 4. multifaceted roles. X X X
- Long-distance transport and heavy 5. industry are the hardest emissions to reduce.

https://www.iea.org/reports/energytechnology-perspectives-2020

IEA strategy: annual CO2 emissions over 50 years.

https://www.iea.org/reports/energy-technology-perspectives-2020

Electricity nearly triples.

~20% of electricity for hydrogen and synfuels

IEA Hydrogen strategy

Electrolyze 300 Mthydrogen per year (half H2 demand)

Total H2 prod = 1,281+218 =1500 Mtoe/year = **2,000 GW**(t) of H2

CCUS =carbon capture underground storage

https://www.iea.org/reports/energy-technology-perspectives-2020

IEA synfuel strategy

154 Mtoe/year of **ammonia** = **204 GW** NH3 for shipping

348 Mtoe/year **kerosene** = **462 GW** aviation fuel

771 Mtoe/year **hydrogen** = **1000 GW** H2 fuel

Note expectation of CCUS carbon capture underground storage

https://www.iea.org/reports/energy-technology-perspectives-2020

Use of hydrogen, Hydrogen-based fuel production hydrogen-based fuels

Lucid Catalyst fossil fuel replacement strategy.

- 1. Clean hydrogen, as fuel or feedstock.
- 3. Cheap electricity, source of hydrogen energy.
- **4. Full-time operation**, to minimize capital costs.
- 5. Clean heat, for industrial processes.
- **6.** Synfuels, such as ammonia, for shipping.
- factories.

2. High temperature electrolysis, to make hydrogen at 95% efficiency.

7. Shipyard mass production, of power plants, electrolyzers, and

https://85583087-f90f-41ea-bc21-bf855ee12b35.filesusr.com/ugd/2fed7a_0d2e1cc06bff412cb3031fd4bdf93cb0.pdf

Energy Transitions Commission 2050 strategy (RMI, BNEF, ...)

fossil fuels 2,500 GWt

biomass 1,500 GWt

electricity 9,000 GWe

https://www.energy-transitions.org/wp-content/uploads/2020/09/Making-Mission-Possible-Full-Report.pdf

Fission energy grand strategy

Electricity

Ample, cheap, 24x7 electric power

Transportation

- electrify rail, light vehicles
- synfuels for air, sea, heavy land transport

Buildings

- building codes, heat pumps
- district heating

Industry

- high heat: electric arcs, plasma torches
- new processes, H2 reduction

Key technologies

Liquid fission

- high temp, low press liquid fuel

Hydrogen

- water electrolysis

Ammonia

- fuel, fertilizer

Shipyard manufacturing

- fast, efficient
- power plants
- factories

