7 Fission power

Fission is in Hashion

Fission energy PWR nuclear power plants ThorCon Molten salt reactor Cheaper than coal Market size, growth Shipyard mass production

Fission is in Fashion

Argentina Signs \$8B Deal for China's Hualong One PWR

(NucNet) State companies Nucleoeléctrica Argentina and China National Nuclear Corporation (CNNC) have signed an engineering, procurement and construction (EPC) contract for construction of a China-supplied HPR1000 nuclear power plant at what will become the Atucha III nuclear power station.

The cost of the project is estimated to be \$8 billion with China providing 85% of the costs. A key remaining hurdle, and it's a big one, is financing Argentina's 15% share worth \$1.2 billion.

Overwhelming support from college of commissioners for including nuclear in EU green taxonomy

References

France to build up to 14 new nuclear reactors by 2050, says Macron

French president says 'renaissance' of atomic energy industry will help end country's reliance on fossil fuels

2022	Belarao, Briti i			
2022	China, CGN		i luulong one	
2022	China, CGN	Fangchenggang 4	Hualong One	1180
2022	China, CGN	Hongyanhe 6	ACPR-1000	1119
2022	Finland, TVO	Olkiluoto 3	EPR	1720
2022	India, NPCIL	Kakrapar 4	PHWR-700	700
2022	India, NPCIL	Kalpakkam PFBR	FBR	500
2022	India, NPCIL	Rajasthan 7	PHWR-700	700
2022	Korea, KHNP	Shin Hanul 1	APR1400	1400
2022	Pakistan	Karachi/KANUPP 3	ACP1000	1161
2022	Russia, Rosenergoatom	Kursk II-1	VVER-TOI	1255
2022	Slovakia, SE	Mochovce 3	VVER-440	471
2022	USA, Southern	Vogtle 3	AP1000	1250
2023	Argentina, CNEA	Carem	Carem25	29
2023	Bangladesh	Rooppur 1	VVER-1200	1200

Power reactors unde

Relarus RNPP

Start +

2022

World Nuclear Association

tracks fission power plants in 42 countries.

Power Status

392 GW in operation

62 GW under construction

96 GW planned

354 GW proposed

https://www.world-nuclear.org/information-library/facts-and-figures/world-nuclear-power-reactors-and-uranium-requireme.aspx

for	2	020	Ma	rch 2022	Ma	rch 2022	Mar	ch 2022	Mar	ch 2022	2021
Country Profile)	TWh	% e	No.	MWe net	No.	MWe gross	No.	MWe gross	No.	MWe gross	tonnes U
Arcontino	10.0	75	2	16/1	1	20	1	1150	2	1250	167
Armonia	2.6	24.5	1	/15	0	29	0	0	2 1	1060	50
Bangladesh	0	0	0	-413	2	2400	0	0	2	2400	0
<u>Belarus</u>	0.3	1.0	1	1110	1	1194	0	0	2	2400	179
Belgium	32.8	39.1	7	5942	0	0	0	0	0	0	790
Brazil †	13.2	2.1	2	1884	1	1405	0	0	4	4000	340
Bulgaria	15.9	40.8	2	2006	0	0	1	1000	2	2000	322
Canada	92.2	14.6	19	13.624	0	0	0	0	2	1500	1492
China	344.7	4.9	53	50.769	19	20.930	34	38.110	168	196.860	9563
Czech											
Republic	28.4	37.3	6	3934	0	0	1	1200	3	3600	706
<u>Egypt</u>	0	0	0	0	0	0	4	4800	0	0	0
<u>Finland</u>	22.4	33.9	5	4394	0	0	1	1170	0	0	421
France	338.7	70.6	56	61,370	1	1650	0	0	0	0	8233
<u>Germany</u>	60.9	11.3	3	4055	0	0	0	0	0	0	521
<u>Hungary</u>	15.2	48.0	4	1902	0	0	2	2400	0	0	320
India	40.4	3.3	23	6885	8	6700	12	8400	28	32,000	977
<u>Iran</u>	5.8	1.7	1	915	1	1057	1	1057	5	2760	153
<u>Japan</u> †	43.0	5.1	33	31,679	2	2756	1	1385	8	11,562	1396
<u>Jordan</u>	0	0	0	0	0	0	0	0	1	1000	0
<u>Kazakhstan</u>	0	0	0	0	0	0	0	0	2	600	0
<u>Korea RO</u> <u>(South)</u>	152.6	29.6	24	23,136	4	5600	0	0	2	2800	4270
<u>Lithuania</u>	0	0	0	0	0	0	0	0	2	2700	0
<u>Mexico</u>	10.9	4.9	2	1552	0	0	0	0	3	3000	226
Netherlands	3.9	3.3	1	482	0	0	0	0	0	0	69
<u>Pakistan</u>	9.6	7.1	6	3256	0	0	1	1170	0	0	787
Poland	0	0	0	0	0	0	0	0	6	6000	0
Romania	10.6	19.9	2	1300	0	0	2	1440	1	720	185
Russia ‡	201.8	20.6	37	27,653	3	2810	27	23,725	21	20,100	5925
<u>Saudi</u> Arabia	0	0	0	0	0	0	0	0	16	17,000	0
<u>Slovakia</u>	14.4	53.1	4	1837	2	942	0	0	1	1200	359
<u>Slovenia</u>	6.0	37.8	1	688	0	0	0	0	1	1000	127
<u>South</u> Africa	11.6	5.9	2	1860	0	0	0	0	8	9600	277
<u>Spain</u>	55.8	22.2	7	7121	0	0	0	0	0	0	1221
<u>Sweden</u>	47.4	29.8	6	6882	0	0	0	0	0	0	914
Switzerland	23.0	32.9	4	2960	0	0	0	0	0	0	412
<u>Thailand</u>	0	0	0	0	0	0	0	0	2	2000	0
<u>Turkey</u>	0	0	0	0	3	3600	1	1200	8	9500	0
Ukraine †	71.5	51.2	15	13,107	2	1900	0	0	2	2,400	1876
<u>UAE</u>	1.6	1.1	2	2690	2	2800	0	0	0	0	907
<u>United</u> Kingdom	45.9	14.5	11	6848	2	3440	2	3340	2	2300	1259
<u>USA</u>	789.9	19.7	93	95,523	2	2500	3	2550	18	8000	17,587
<u>Uzbekistan</u>	0	0	0	0	0	0	2	2400	2	2400	0
WORLD*	2553	c 10.3**	439	392,279	56	61,713	96	96,497	325	353,812	62,496
	ΤWh	% e	No.	MWe	No.	MWe	No.	MWe	No.	MWe	tonnes U

France electric power: 80% atomic fission:

39 GW

Biomass/Geothermal/Other Wind 500 -Solar Hydro Nuclear 400 TWh per year 200 100 0 1970 1980

Data from BP Statistical Review of World Energy 1965-2020.

https://www.world-nuclear.org/information-library/facts-and-figures/world-nuclear-power-reactors-and-uranium-requireme.aspx

Electricity Generation in France by Source

Pressurized water reactor (PWR) uses 155 bar 275C water to move heat to steam generator to turn turbine-generator.

https://www.nrc.gov/reading-rm/basic-ref/students/animated-pwr.html

Pressurized water slows neutrons so they split uranium atoms. **Cooling water carries away rejected heat.**

https://www.nrc.gov/reading-rm/basic-ref/students/animated-pwr.html

Uranium-235 fissions to krypton and barium releasing energy. The total mass of the resulting

and by e = mc2

= 2.6 GW-years(t)

- barium-141
- krypton-92
- neutrons (3)
- is a bit less than the mass of the U-235 + neutron,
- immediately releases 166 MeV of energy, totaling 200 MeV after Kr and Ba decay.
- 1 tonne-U235 fissioned -> 79,000 TJ

Oklo, Gabon 2 billion years ago

Fissile U-235 was $\sim 3\%$ of uranium.

Groundwater H2O slowed neutrons to fissioning speeds.

Fission heat evaporated water.

Reactor cycled on/ off.

Homo Sapiens

Boiling water reactor (BWR) 75 bar steam turns turbinegenerator directly.

rbine

Control Rods

Uranium fuel is typically enriched from 0.7% U-235 to 3-5%.

Centrifuge enrichment capacity.

Operator	2018	2020	2030
CNNC	6750	6750	19,644
Orano	7500	7500	7500
Rosatom	28,215	27,654	25,000
Urenco	18,600	18,320	16,487
Other	46	66	450
Total	61,111	60,199	69,081

https://www.world-nuclear.org/information-library/nuclear-fuel-cycle/conversion-enrichment-and-fabrication/uranium-enrichment.aspx

Cascade of centrifuges incrementally concentrating UF6 gas

CANDU reactor moderator is D2O, w/o large pressure vessel.

https://en.wikipedia.org/wiki/CANDU_reactor

D2O is heavy water, H2O where each H has 1 proton and 1 neutron, so does not absorb fission neutrons.

CANDU can use natural, unenriched uranium.

Hot and cold sides of the primary heavy-water loop

hot and cold sides of secondary light-water loop

cool heavy water moderator in the calandria

Russian RBMK is graphite moderated, water cooled

https://world-nuclear.org/information-library/nuclear-fuel-cycle/nuclear-power-reactors/appendices/rbmk-reactors.aspx

Chernobyl, 1986

Positive void coefficient

Safety systems improved

8 RBMK plants still operating in Russia

Sodium cooled fast reactor has no neutron moderator.

https://en.wikipedia.org/wiki/Sodium-cooled_fast_reactor

Fueled by U-238, which is 99% of natural uranium

TWR-P (TerraPower)

- 1. Sodium cooled fast reactor
- 2. Funded by Bill Gates
- 3. US, then China, then US
- 4. 1475MWt, 600 MWe
- 5. U-238 fuel rods breed Pu-239 then moved internally
- 6. Ample U-238 fuel, tailings

In situ leach mining of uranium

Uranium Deposit

https://world-nuclear.org/information-library/nuclear-fuel-cycle/mining-of-uranium/in-situ-leach-mining-of-uranium.aspx

Many laboratories are developing seawater uranium extraction.

Figure 1 Alternating-current method for electrochemical extraction of uranium. a, The amidoximefunctionalized electrode is submersed in uranium-spiked seawater. **b**, On application of a pulsed voltage, uranyl ions migrate towards the electrode leading to precipitation of uranium-rich particles. c, Continued pulsed voltage causes growth of the particles. The inset shows an SEM image of the amidoxime electrode covered by particles after 24 h of extraction with an initial uranium concentration of 1,000 ppm. Figure adapted from ref. 7, Macmillan Publishers Ltd.

https://www.nature.com/articles/nenergy201722.pdf.

Nuclear fuel will last us for 4 billion years, writes Nick Touran.

How long nuclear fission can power the world

The US supplies very little of its uranium fuel needs.

	Annual	US Civi
	55K	_
	50K	
lent *	45K	
uiva	40K	
)8 Eq	35K	
U3C	30K	
Thousand Pounds	25K	
	20K	
	15K	
	10K	
	5K	
	ОК	
		2016

https://thebreakthrough.org/issues/energy/report-energy-security-and-decarbonization-in-response-to-russian-aggression? utm_source=Breakthrough+Newsletter&utm_campaign=78ed62e0df-BTI_Weekly_3_16_2022&utm_medium=email&utm_term=0_49b872540e-78ed62e0df-44367585

lian Nuclear Power Plant Foreign & Total Uranium Supply

Age profile of nuclear power capacity in selected nations, 2019

https://www.iea.org/data-and-statistics/charts/age-profile-of-nuclear-power-capacity-in-selected-regions-2019

ThorCon

- cheaper than from coal or LNG
- at shipyard scale 10 GW per year
- helping people achieve prosperity.

Robert Hargraves is a cofounder of ThorCon.

THORCON

POWERING UP OUR WORLD

to mass-produce fission power plants • to generate CO2-free, 24x7 electricity

ThorCon is a <u>Thorium Converter</u>

nucleons	Th 90	Pa 91	U 92	Np 93
241				
240				
239				
238				
237				
236				
235			Sw2	
234				
233		\rightarrow -		
232	Τ			

Fission power

Uranium

- 19.75% U-235 - 50%

Thorium Th-232 —> U-233 - 25%

Plutonium U-238 -> Pu-239- 25%

ThorCon 500 MW liquid fuel fission power plant

Switchgear Hall

Molten salt with dissolved fuel flows up in channels in graphite moderator core.

In the reactor Pot the molten fuelsalt flows up in channels of graphite moderator logs.

- Fission energy heats molten salt as it is pumped up.
- Stable power: fission slows as temperature rises.
- Heat exchangers isolate radioactivity and transfer heat to make steam.
- High 700°C temperature gives high 46% efficiency.

Secondary

Uranium fuel makeup tank

Thorium fuel makeup tank

Pot reactor vessel

32 cylinder drain tank

Replaceable Can, in Silo Cold Wall

- The reactor Pot contains the graphite moderator with channels for molten salt flow.
- Freeze valve melt drains salt to drain tank.
- Cold wall absorbs heat radiated from drain tank.
- Cold wall is cooled by natural water circulation.

Daewoo Shipbuilding and Marine Engineering will be ThorCon's EPC

Prototype will be towed to Indonesia.

Bangka-Belitung governor approved island site.

PER-CAPITA GDP, \$US2013

3,000 GW global electricity use may grow by 2,600 GW.

Developing nations now build coal-fired power plants.

Reliable, 24x7, affordable

ThorCon capital, fuel, and electricity: cheaper than coal.

Costs	units
Capital	\$/kW
Fuel	cents/kWh
Electricity	cents/kWh

Coal	ThorCon
1000-2000	800-1000
2.5	0.5
5	3

Nations will choose 24x7 fission, if it's cheaper.

Economics

Capital cost, \$/Watt

Fuel cost, cents/kWh

Electricity, cents/kWh

Fission	Coal
1.2	2.0
0.53	2.27
3	5

One large shipyard can build 10 GW of liquid fission power plants a year.

Cheaper than coal, 24x7, zero CO2, 3¢/kWh

MOLTEN SALT THORIDA CONVERTERS

The shipbuilding industry has capacity to build 12,000 GW of liquid fission plants in 30 years.

Powering Up Our World with 12,000 GW @ \$1.2/watt = \$14.4 trillion, \$30 per person per year

7 Fission power

Fission is in Hashion

Fission energy PWR nuclear power plants ThorCon Molten salt reactor Cheaper than coal Market size, growth Shipyard mass production