10 Ammonia

Fission is in Fashion

Green revolution

- Feeds nearly half the world
- Shipping use 7% of oil
- Ammonia combustion engines
- Solid oxide synthesis cells

Century-old Haber-Bosch process makes NH3 (ammonia) from CH4 (natural gas). $CH4 + O2 \rightarrow CO2 + 2H2$ $N2 + 3H2 \rightarrow 2NH3$

https://www.thechemicalengineer.com/features/cewctw-fritz-haber-and-carl-bosch-feed-the-world/

Ammonia fertilizer: basis of the Green Revolution, feeds nearly half the world.

https://iowaagliteracy.wordpress.com/2019/03/20/why-do-they-do-that-anhydrous/

- The knife slices the soil and injects the fertilizer 6 to 8 inches into the soil.
- The ammonia (NH3) ions react with moisture in the soil and convert to ammonium (NH4).
- Ammonium ions are bonded to negatively charged soil particles like clay and organic matter.
- These ammonium ions can be taken in by plants and used directly in proteins.
- In time they convert to nitrate (NO3) fertilizer.

Global trade depends on this massive fleet of commercial ships.

https://www.visualcapitalist.com/imo-2020-the-bigshipping-shake-up/

Shipping uses 7% of oil production, emitting SOx. 2020 IMO changed SOx cap from 3.5% to 0.5%.

Burning bunker fuel generates close to 90% of all sulfur emissions globally.

(Source: Goldman Sachs)

https://www.visualcapitalist.com/imo-2020-the-big-shipping-shake-up/

[Sulfur] EMISSIONS

In fact, the 15 largest ships in the world produce more sulfur emissions than all of the world's cars combined.

(Source: Guardian)

More nuclear reactors in ships than power plants in 1990 ! US built just one nuclear powered merchant ship.

SCIENCE PHOTO LIBRARY

"A very attractive ship": The NS Savannah, pictured in 1962

https://www.bbc.com/news/magazine-28439159

Mirai, Japan

Otto Hahn, Germany

Dozen icebreakers, submarines, US Russia

Fission powered shipping is a good emissions solution, ignored.

Clean Air Task Force recommends NH3 ammonia fuel for shipping.

Ammonia, NH3

https://www.energy.gov/sites/prod/files/2015/01/f19/fcto_nh3_h2_storage_white_paper_2006.pdf

- Nitrogen is 78% of the atmosphere.
- Ammonia stored in pressurized tanks, ~15 bar, like propane.
- 11.5 MJ/liter energy density, 1/3 that of diesel.
- High octane, low flame temperature can enable high-compression ICE with little NOx emissions.
- Household ammonia is NH3 in H2O.

NYK ammonia tanker will use ammonia in its fuel mix.

NH3 speed of combustion is low, compared to CxHy fuels.

https://www.ammoniaenergy.org/wp-content/uploads/2019/08/20191112.1408-NH3FuelConf_Okafor1.pdf https://www.ammoniaenergy.org/articles/japans-nyk-and-partners-to-develop-ammonia-fueled-and-fueling-vessels/

H2 might be a combustion accelerator for a ship's ammonia engine.

Cracking (heating) NH3 yields H2 accelerant.

25:1 compression ratio allows NH3 compression ignition.

Emerging technology

Big (diesel) engine example - 80 MW power (100,000 hp) - < 120 rpm

https://www.ammoniaenergy.org/articles/ammonia-powered-internal-combustion-engines/

MAN ES expects to deliver its first marine ammonia engine in 2024, retrofits in 2026.

https://fathom.world/wp-content/uploads/2020/05/engineeringthefuturetwostrokegreenammoniaengine1589339239488.pdf

Ammonia fueled Belgium motor-buses.

The X-15 used ammonia fuel to set speed and altitude records in the 1960s.

Trucks can run on ammonia fuel.

Internal combustion engines can run on ammonia fuel.

Marangoni Toyota G86 Eco Explorer 180 km on 30 litres NH3 @ \$0.20 ~19 miles/\$

Experience with producing, transporting, using ammonia.

- 2nd most common chemical in use
- 130 Mt/year
- 3000 miles of US pipelines
- No corrosion or embrittlement problems
- 4.5 Mt of large-tank ammonia storage

Ammonia can be handled safely.

Vehicle pressure tanks

14 bar ammonia propane 12 bar natural gas 200 bar

Spill danger

alerting odor

lighter than air

difficult to ignite; ignition temperature 650° C fire extinguished with plain water

Toxicity

safety experience: 2nd most common industrial chemical inhalation of 500 ppm is dangerous humans and mammals process NH3 in urea cycle (but not fish)

About as dangerous as gasoline

Limit use to trained truck drivers and ship crews?

Solid state ammonia synthesis can make NH3 from H2O, N2, and electricity.

Electricity

H₂O

Air

Like a solid oxide fuel cell, in reverse

Proton conducting ceramic membrane

Advantages

- Never any H2 gas
- Low pressure
- Modular scale-up

550° steam from liquid fission reheated to 650°

Safer, cheaper than Haber-Bosch

http://www.energy.iastate.edu/Renewable/ammonia/ammonia/2008/Sammes_2008.pdf

~6800 kWh / ton

http://www.energy.iastate.edu/Renewable/ammonia/ammonia/2008/Sammes 2008.pdf

Haldor Topsoe solid oxide NH3 synthesis

https://www.ammoniaenergy.org/wp-content/uploads/2019/08/20191112.0800-NH3-Topsøe.pdf

NH3 solid oxide fuel cell synthesis benefits: **New Solid Oxide Electrolysis based synthesis**

gas process

- 1. Synergy with HB using steam from synthesis reaction
- 2. Eliminates air separation unit due SOC built-in oxygen separation
- 3. Utilize heat of air combustion to split steam
- 4. High efficiency

Ammonia is the perfect fuel for Solid Oxide Fuel Cells

- No fuel processing
- 2. No carbon problems => no need for steam addition
- 3. Cooling by ammonia cracking

https://www.ammoniaenergy.org/wp-content/uploads/2019/08/20191112.0800-NH3-Topsøe.pdf

The Future is Here for Solid Oxide Electrolysis Cells (Oct 22, 2020, Ammonia Energy Association, Science)

- higher operating temperatures."
- (SOFC),"
- 4. solid oxide cells providing 1000 GW of power in fuel cell mode would require just 1

1. "the initial electrochemical performance of state-of-the-art SOEC single cells has more than doubled, while long-term durability has been improved by a factor of ~100. Similar improvements in performance and durability have been achieved on the stack level."

2. "unrivaled conversion efficiencies — a result of favorable thermodynamics and kinetics at

3. ability to be "operated in reverse, [so that] an SOEC functions as a solid oxide fuel cell

month's worth of global ZrO2 production and 21 months' worth of Y2O3, compared to...

5. 1000 GW-hours from Li-ion batteries requires ~160 years of Li production (2012), and 1000 GW-days from a PEM fuel cell system requires 53 months' global Pt production.

Haldor Topsoe NH3 synthesis process: 7.2 kWh/kg

At \$0.03/kWh electricity ammonia costs 22 cents/kg

Confirming Darryl Siemer's decade-old estimate.

SOEC

https://www.ammoniaenergy.org/wp-content/uploads/2019/08/20191112.0800-NH3-Topsøe.pdf

154 ²⁰¹ 84

Total energy: 7223 kWh/MT NH₃ Haber-Bosch Synthesis only 6.0 % !

Air Comp Syngas Comp Refrigeration

Green Energy Oman proposes wind and sun to power hydrogen-ammonia production.

https://intercontinentalenergy.com/green-energy-oman

25 GW(e) wind at night, sun in day 70% capacity factor \$30 billion 6,500 km2 10 MT/year ammonia $= 5.7 \, \text{GW(t)}$

10 Ammonia

Fission is in Fashion

Green revolution

- Feeds nearly half the world
- Shipping use 7% of oil
- Ammonia combustion engines
- Solid oxide synthesis cells